Skip to main content

CONGESTION CONTROL ALGORITHM FOR NETWORKS

 Rate Control Protocol (RCP) is a congestion control algorithm designed for fast download times (i.e. aka user response times, or flow-completion times). Whereas other modifications to TCP (e.g. STCP, Fast TCP, XCP) are designed to work for specialized applications that use long-lived flows (scientific applications and supercomputer centers), RCP is designed for the typical flows of typical users in the Internet today. For example, a mid-size flow in the Internet today contains 1000 packets and TCP typically makes them last 10x longer than need-be (XCP is even worse). RCP makes flows finish close to the minimum possible, leading to a perceptible improvement for web users, distributed computing, and distributed file-systems. We believe RCP is the only congestion control algorithm to do this.


The main properties of RCP are:
  • Typical Internet flows will see 10 times faster download times than TCP and 30 times faster than XCP. Winners are the greater than 90% of sessions that never leave slow-start today.
  • Efficiently uses high bandwidth-delay product networks such as the long haul optical links.
  • Provably stable network independent of link-capacities, round-trip times and number of flows.
  • Flows are easy to police, to ensure they adhere to congestion control (not generally possible with other schemes).
  • Network operators can give preference (or weighted preference) to some flows/aggregates.

RCP has two components 

(1) End-host congestion control layer that sits between IP and TCP/UDP. During introduction, the end-host could adapt by testing for RCP at each end and along the path, falling back to TCP if need-be. 

(2) Each router maintains a single fair-share rate per link. Each packet carries the rate of the bottleneck link. For each packet, the router compares the two values. If the router's fair-share rate is smaller, it overwrites the value in the packet. This way, the source learns the fair-share rate of bottleneck link. It is simple, requires a very minor change to switches/routers and requires no per-flow state. 


For scripts, Click here
For ns 2.35 RCP patch, Click here 
For more, Click here

Comments

Popular posts from this blog

Link State Routing Protocol

Link state routing is a method in which each router shares its neighborhood’s knowledge with every other router on the internetwork. In this algorithm, each router in the network understands the network topology and then makes a routing table depending on this topology. Each router will share data about its connection to its neighbor, who will, consecutively, reproduce the data to its neighbors, etc. This appears just before all routers have constructed a topology of the network. In LSP, each node transmits its IP address and the MAC to its neighbor with its signature. Neighbors determine the signature and maintain a record of the combining IP address and the MAC. The Neighbor Lookup Protocol (NLP) of LSP derives and maintains the MAC and IP address of every network frame accepted by a node. The extracted data can support the mapping of MACs and IP addresses. The link-state flooding algorithm prevents the general issues of broadcast in the existence of loops by having every node mainta

Windows 11

Windows has always existed to be a stage for the world’s innovation. It’s been the backbone of global businesses and where scrappy startups became household names. The web was born and grew up on Windows. It’s the place where many of us wrote our first email, played our first PC game and wrote our first line of code. Windows is the place people go to create, to connect, to learn and to achieve – a platform over a billion people today rely on. The responsibility of designing for that many people is one we don’t take lightly. The past 18 months brought an incredible shift in how we used our PCs; we went from fitting the PC into our lives to trying to fit our whole lives into the PC. Our devices weren’t just where we went for meetings, classes and to get things done, but where we came to play games with friends, binge watch our favorite shows and, perhaps most meaningfully, connect with one another. In the process we found ourselves recreating the office banter, the hallway chatter, worko

Matter: A next generation home standard

The smart home is evolving. To date, if you've wanted to get into developing a smart home, you've had to deal with the multitude of smart home ecosystems, and making sure that each device you buy is compatible. That, however, may soon change — thanks to new smart home standard called Matter. Matter isn't available just yet, but when it is finally released, it could completely change how you buy smart home products, for the better. All of the best smart home devices could soon support the standard, helping them all work together nicely, and ensuring that no matter what products you buy, you'll be able to use them. Matter is basically the name of a new smart home connectivity standard . But this standard is a little unlike others. That's because of the fact that it's being developed by the Connectivity Standards Alliance, which counts hundreds of companies as members. That includes the likes of Google, Alexa, and Apple. So, whether you prefer to use Google Assista