Skip to main content

NEW PROTOCOL IMPLEMENTATION

First of all create a directory in your ns-2.34 directory with the following files.

  1. protoname_pkt.h
  2. protoname_rtable.cc
  3. protoname_rtable.h
  4. Protoname.cc        # Note the capital P in the beginning and must be capital P
  5. protoname.h



The code for protoname_pkt.h is given below

#ifndef PROTONAME_PKT_H_
#define PROTONAME_PKT_H_

#include <packet.h>
#include <config.h>
#include <random.h>
#include <timer-handler.h>
#include <trace.h>
#include <classifier-port.h>

#define HDR_PROTONAME_PKT(p) hdr_protoname_pkt::access(p)

struct hdr_protoname_pkt {

nsaddr_t pkt_src_;       //Node which originated this packet
u_int16_t pkt_len_;    //Packet length (in bytes)
u_int8_t pkt_seq_num_; //Packet Sequence Number

inline nsaddr_t& pkt_src() {return pkt_src_;}
inline u_int16_t& pkt_len() {return pkt_len_;}
inline u_int8_t& pkt_seq_num() {return pkt_seq_num_;}

static int offset_;
inline static int& offset() {return offset_;}

// To access the hdr_protoname_pkt packet header in a packet pointed by p, we use the access fn
inline static hdr_protoname_pkt* access(const Packet* p) {
return (hdr_protoname_pkt*)p->access(offset_);
}
};

#endif /* PROTONAME_PKT_H_ */


The code for protoname_rtable.cc is given below

#include "protoname_rtable.h"
#include "ip.h"

protoname_rtable::protoname_rtable() { }

void protoname_rtable::print(Trace* out) {
sprintf(out->pt_->buffer(), "p\tdest\tnext");
out->pt_->dump();
for (rtable_t::iterator it = rt_.begin(); it != rt_.end(); it++) {
sprintf(out->pt_->buffer(), "P\t%d\t%d", (*it).first, (*it).second);
out->pt_->dump();
}
}

void
protoname_rtable::clear() {
rt_.clear();
}

void
protoname_rtable::rm_entry(nsaddr_t dest) {
rt_.erase(dest);
}

void
protoname_rtable::add_entry(nsaddr_t dest, nsaddr_t next) {
rt_[dest] = next;
}

nsaddr_t
protoname_rtable::lookup(nsaddr_t dest) {
rtable_t::iterator it = rt_.find(dest);
if (it == rt_.end())
return IP_BROADCAST;
else
return (*it).second;
}

u_int32_t
protoname_rtable::size() {
return rt_.size();
}

The code for protoname_rtable.h is given below

#ifndef PROTONAME_RTABLE_H_
#define PROTONAME_RTABLE_H_

#include <trace.h>
#include <map>
#include <ip.h>

typedef std::map<nsaddr_t, nsaddr_t> rtable_t;

class protoname_rtable {
rtable_t rt_;

public:
protoname_rtable();
void print(Trace*);
void clear();
void rm_entry(nsaddr_t);
void add_entry(nsaddr_t, nsaddr_t);
nsaddr_t lookup(nsaddr_t);
u_int32_t size();
};

#endif /* PROTONAME_RTABLE_H_ */

The code for Protoname.cc is given below

#include "protoname.h"
#include "protoname_pkt.h"
#include "protoname_rtable.h"
#include <timer-handler.h>
#include <node.h>
#include <random.h>
#include <cmu-trace.h>
#include <iostream>
#include <classifier-port.h>
#include <packet.h>
#include <address.h>

// To Bind our packet in OTcl Interface
int hdr_protoname_pkt::offset_;
static class ProtonameHeaderClass : public PacketHeaderClass {
public:
ProtonameHeaderClass() : PacketHeaderClass("PacketHeader/PROTONAME", sizeof(hdr_protoname_pkt)) {
bind_offset(&hdr_protoname_pkt::offset_);
}
}class_rtProtoProtoname_hdr;

static class ProtonameClass : public TclClass
{
public:
ProtonameClass() : TclClass("Agent/PROTONAME") {}
TclObject* create(int argc, const char*const* argv) {
assert(argc==5);
return(new Protoname((nsaddr_t)Address::instance().str2addr(argv[4])));
}
}class_rtProtoProtoname;

void
Protoname_PktTimer::expire(Event* e) {
agent_->send_protoname_pkt();
agent_->reset_protoname_pkt_timer();
}

Protoname::Protoname(nsaddr_t id) : Agent(PT_PROTONAME), pkt_timer_(this) {
bind_bool("accessible_var_", &accessible_var_);
ra_addr_ = id;
}

int
Protoname::command(int argc, const char*const* argv) {
if(argc == 2) {
if (strcasecmp(argv[1], "start") == 0) {
pkt_timer_.resched(0.0);
return TCL_OK;
}
else if (strcasecmp(argv[1],"print_rtable") == 0) {
if(logtarget_ != 0) {
sprintf(logtarget_->pt_->buffer(), "P %f _%d_ Routing Table", CURRENT_TIME, ra_addr());
logtarget_->pt_->dump();
rtable_.print(logtarget_);
}
else {
fprintf(stdout, "%f _%d_ If you want to print this routing table ""you must create a trace file in your TCL Script",CURRENT_TIME, ra_addr());
}
return TCL_OK;
}
}
else if (argc == 3) {
//Obtains corresponding dmux to carry packets to upper layer
if (strcmp(argv[1], "port-dmux") == 0) {
dmux_ = (PortClassifier*)TclObject::lookup(argv[2]);
if (dmux_ == 0) {
fprintf(stderr, "%s: %s lookup of %s failed \n", __FILE__,argv[1],argv[2]);
return TCL_ERROR;
}
return TCL_OK;
}
//Obtains corresponding tracer
else if (strcmp(argv[1], "log-target") == 0 || strcmp(argv[1], "tracetarget") == 0) {
logtarget_ = (Trace*)TclObject::lookup(argv[2]);
if (logtarget_ == 0)
return TCL_ERROR;
return TCL_OK;
}
}
//Pass the command to the base class
return Agent::command(argc, argv);
}

void
Protoname::recv(Packet* p, Handler* h) {
struct hdr_cmn* ch    = HDR_CMN(p);
struct hdr_ip* ih     = HDR_IP(p);

if (ih->saddr() == ra_addr()){
//If there exists a routing loop, drop the packet
if(ch->num_forwards() > 0) {
drop(p, DROP_RTR_ROUTE_LOOP);
return;
}

//else if this is a packet I am originating, must add IP header
else if(ch->num_forwards() == 0)
ch->size() += IP_HDR_LEN;
}

// If it is a protoname packet, must process it
if(ch->ptype() == PT_PROTONAME)
recv_protoname_pkt(p);

//Otherwise, must forward the packet (unless TTL reaches zero
else {
ih->ttl_--;
if(ih->ttl_ == 0) {
drop(p, DROP_RTR_TTL);
return;
}
forward_data(p);
}
}

void
Protoname::recv_protoname_pkt(Packet* p) {
struct hdr_ip* ih                = HDR_IP(p);
struct hdr_protoname_pkt* ph    = HDR_PROTONAME_PKT(p);

// All routing messages are sent from and to port RT_PORT, so we shall check it
assert(ih->sport() == RT_PORT);
assert(ih->dport() == RT_PORT);

/* processing of protoname packet */

// Release resources
Packet::free(p);
}

void
Protoname::send_protoname_pkt() {
Packet* p                        = allocpkt();
struct hdr_cmn* ch                = HDR_CMN(p);
struct hdr_ip* ih                = HDR_IP(p);
struct hdr_protoname_pkt* ph     = HDR_PROTONAME_PKT(p);

ph->pkt_src()                     = ra_addr();
ph->pkt_len()                    = 7;
ph->pkt_seq_num()                = seq_num_++;

ch->ptype()                        = PT_PROTONAME;
ch->direction()                    = hdr_cmn::DOWN;
ch->size()                        = IP_HDR_LEN + ph->pkt_len();
ch->error()                        = 0;
ch->next_hop()                    = IP_BROADCAST;
ch->addr_type()                    = NS_AF_INET;

ih->saddr()                     = ra_addr();
ih->daddr()                        = IP_BROADCAST;
ih->sport()                        = RT_PORT;
ih->dport()                        = RT_PORT;
ih->ttl()                        = IP_DEF_TTL;

Scheduler::instance().schedule(target_, p, JITTER);
}

void
Protoname::reset_protoname_pkt_timer() {
pkt_timer_.resched((double)5.0);
}

void
Protoname::forward_data(Packet* p) {
struct hdr_cmn* ch = HDR_CMN(p);
struct hdr_ip* ih = HDR_IP(p);

if(ch->direction() == hdr_cmn::UP && ((u_int32_t)ih->daddr() == IP_BROADCAST || ih->daddr() == ra_addr())) {
dmux_->recv(p, NULL);
return;
}
else {
ch->direction() = hdr_cmn::DOWN;
ch->addr_type() = NS_AF_INET;
if ((u_int32_t)ih->daddr() == IP_BROADCAST)
ch->next_hop() = IP_BROADCAST;
else {
nsaddr_t next_hop = rtable_.lookup(ih->daddr());
if(next_hop == IP_BROADCAST) {
debug("%f: Agent %d can not forward a packet destined to %d \n", CURRENT_TIME,ra_addr(),ih->daddr());
drop(p, DROP_RTR_NO_ROUTE);
return;
}
else
ch->next_hop() =  next_hop;
}
Scheduler::instance().schedule(target_, p, 0.0);
}
}

The code for protoname.h is given below

#ifndef PROTONAME_H_
#define PROTONAME_H_

#include "protoname_pkt.h"
#include "protoname_rtable.h"
#include <agent.h>
#include <packet.h>
#include <trace.h>
#include <timer-handler.h>
#include <random.h>
#include <classifier-port.h>
#include "arp.h"
#include "ll.h"
#include "mac.h"
#include "ip.h"
#include "delay.h"

#define CURRENT_TIME Scheduler::instance().clock()
#define JITTER (Random::uniform()*0.5)

class Protoname;    //Forward Declaration

/* TIMERS */

class Protoname_PktTimer : public TimerHandler {
public :
Protoname_PktTimer(Protoname* agent) : TimerHandler() {
agent_ = agent;
}
protected:
Protoname* agent_;
virtual void expire(Event* e);
};

/* Agent */
class Protoname : public Agent {
/* Friends */
friend class Protoname_PktTimer;

/*Private Members*/
nsaddr_t             ra_addr_;
//protoname_state     state_;
protoname_rtable     rtable_;
int                 accessible_var_;
u_int8_t             seq_num_;

protected :

PortClassifier*     dmux_;            //For Passing Packets Up To Agents
Trace*                logtarget_;        //For Logging
Protoname_PktTimer     pkt_timer_;        //Timer for sending packets

inline nsaddr_t&         ra_addr()             {return ra_addr_; }
//inline protoname_state& state()                {return state_;}
inline int&             accessible_var()     {return accessible_var_;}

void forward_data(Packet*);
void recv_protoname_pkt(Packet*);
void send_protoname_pkt();

void reset_protoname_pkt_timer();

public:
Protoname(nsaddr_t);
int command(int, const char*const*);
void recv(Packet*, Handler*);

};

#endif /* PROTONAME_H_ */

Note: Now we have to make changes to certain ns-2.34 files. The steps given below are most important for successful implementation so perform them very carefully.

Open file packet.h under ns-2.34/common/packet.h. Do the changes given below.

Under typedef unsigned int packet_t; lots of constants would have been defined.

Go down and at Line 182 u will find

// AOMDV packet
static const packet_t PT_AOMDV = 61;

After it insert the line as follows

// insert new packet types here
static const packet_t    PT_PROTONAME = 62;

and change PT_NTYPE value from 62 (earlier) to 63 now.

static packet_t PT_NTYPE = 63; // This MUST be the LAST one

Then in the same file move down till u find p_info(). In it search for the function
static packetClass classify(packet_t type) {

and perform the following changes in it by entering the 2nd line below.

type == PT_AODV ||
type == PT_PROTONAME)
return ROUTING;

In the same file, go below and search for the function static void initName(). Now at the end of this function u shall find this

// AOMDV patch
name_[PT_AOMDV]= "AOMDV";

After this enter the following line.

name_[PT_PROTONAME] = "PROTONAME";
name_[PT_NTYPE]= "undefined"; // let it remain as it is

Open the file cmu-trace.h under ns-2.34/trace/cmu-trace.h

At line 162 u shall find

void    format_aomdv(Packet *p, int offset);

After it enter the following line

void format_protoname(Packet *p, int offset);

Now open the file cmu-trace.cc in the same folder ns-2.34/trace/cmu-trace.h

Include the following header file at the beginning.

#include <protoname/protoname_pkt.h>

Now at the end write the following code ( u can always copy-paste) :)

void
CMUTrace::format_protoname(Packet* p, int offset)
{
struct hdr_protoname_pkt* ph = HDR_PROTONAME_PKT(p);

if(pt_->tagged()) {
sprintf(pt_->buffer() + offset, “-PROTONAME:o %d -PROTONAME:s %d -PROTONAME:l %d”, ph->pkt_src(), ph->pkt_seq_num(), ph->pkt_len());
}
else if (newtrace_) {
sprintf(pt_->buffer() + offset, “-P PROTONAME -Po %d -Ps %d -Pl %d “, ph->pkt_src(), ph->pkt_seq_num(), ph->pkt_len());
}
else {
sprintf(pt_->buffer() + offset, “[PROTONAME %d %d %d] “, ph->pkt_src(), ph->pkt_seq_num(), ph->pkt_len());
}
}

After the above steps search for the function (in the same file) at Line 1305 (most probably)

void CMUTrace::format(Packet* p, const char *why)

move down and after

case PT_PING:
break;

Enter the following lines

case PT_PROTONAME:
format_protoname(p, offset);
break;

Open the file ns-packet.tcl under ns-2.34/tcl/lib/ns-packet.tcl
Search at Line 113 for
foreach prot {

Enter the following after to it to make it look like this

foreach prot {
PROTONAME
# Common:
Common
Flags
IP     # IP
# Routing Protocols:
NV     # NixVector classifier for stateless routing
....

Open the file ns-default.tcl under ns-2.34/tcl/lib/ns-default.tcl

In the end of the file enter the following line

Agent/PROTONAME set accessible_var_ true

Open the file ns-lib.tcl under ns-2.34/tcl/lib/ns-lib.tcl

Search at Line 604 for the function
Simulator instproc create-wireless-node args {

Go below and after

switch -exact $routingAgent_ {

Enter the following lines

PROTONAME {
set ragent [$self create-protoname-agent $node]
}

To make it look like this
switch -exact $routingAgent_ {
PROTONAME {
set ragent [$self create-protoname-agent $node]
}
DSDV {
set ragent [$self create-dsdv-agent $node]
}

Now in the same file go at last or end and enter the following lines

Simulator instproc create-protoname-agent { node } {
# Create Protoname Routing Agent
set ragent [new Agent/PROTONAME [$node node-addr]]
$self at 0.0 "$ragent start"
$node set ragent_ $ragent
return $ragent
}

Open file priqueue.cc under ns-2.34/queue/priqueue.cc
Search for the function at Line 82.
PriQueue::recv(Packet *p, Handler *h)

After case PT_AOMDV: enter the following line

case PT_PROTONAME:

It should look like this

case PT_AOMDV:
case PT_PROTONAME:
recvHighPriority(p, h);
break;

Now changes to be done in Makefile.in
Under INCLUDES add the following directory

-I./wpan \
-I./protoname

Under OBJ_CC do the following changes at the end.

protoname/Protoname.o protoname/protoname_rtable.o \
@V_STLOBJ@

Now save your project and move to the command line Ctrl + Alt + T.

Browse to directory ns-2.34 under ns-allinone-2.34 directory.

Perform the following commands in order.

./configure

make clean

make depend // Optional

make

sudo make install

U shall get no errors. If you are getting any errors ask in the comments section.

Now we have to make a tcl file to test the protocol.

In home directory. Create a tcl file with the name exproto.tcl. The contents of the tcl file are as follows (I have defined 6 nodes)

# Define options
set val(chan) Channel/WirelessChannel ;# channel type
set val(prop) Propagation/TwoRayGround ;# radio-propagation model
set val(netif) Phy/WirelessPhy ;# network interface type
set val(mac) Mac/802_11 ;# MAC type
set val(ifq) CMUPriQueue ;# interface queue type
set val(ll) LL ;# link layer type
set val(ant) Antenna/OmniAntenna ;# antenna model
set val(ifqlen) 50 ;# max packet in ifq
set val(nn) 6 ;# number of mobilenodes
set val(rp) PROTONAME ;# routing protocol
set val(x) 1000 ;# X dimension of topography
set val(y) 1000 ;# Y dimension of topography
set val(stop) 150 ;# time of simulation end

set ns [new Simulator]
set tracefd [open simple.tr w]
set namtrace [open simwrls.nam w]

$ns trace-all $tracefd
$ns namtrace-all-wireless $namtrace $val(x) $val(y)

# set up topography object
set topo [new Topography]

$topo load_flatgrid $val(x) $val(y)

create-god $val(nn)

# configure the nodes
$ns node-config -adhocRouting $val(rp) \
-llType $val(ll) \
-macType $val(mac) \
-ifqType $val(ifq) \
-ifqLen $val(ifqlen) \
-antType $val(ant) \
-propType $val(prop) \
-phyType $val(netif) \
-channelType $val(chan) \
-topoInstance $topo \
-agentTrace ON \
-routerTrace ON \
-macTrace OFF \
-movementTrace ON

for {set i 0} {$i < $val(nn) } { incr i } {
set n($i) [$ns node]
}

# Provide initial location of mobilenodes
$n(0) set X_ 100.0
$n(0) set Y_ 200.0
$n(0) set Z_ 0.0

$n(1) set X_ 200.0
$n(1) set Y_ 400.0
$n(1) set Z_ 0.0

$n(2) set X_ 500.0
$n(2) set Y_ 600.0
$n(2) set Z_ 0.0

$n(3) set X_ 400.0
$n(3) set Y_ 500.0
$n(3) set Z_ 0.0

$n(4) set X_ 700.0
$n(4) set Y_ 400.0
$n(4) set Z_ 0.0

$n(5) set X_ 500.0
$n(5) set Y_ 800.0
$n(5) set Z_ 0.0

# Set a TCP connection between n(1) and n(3)
set tcp [new Agent/TCP/Newreno]
$tcp set class_ 2
set sink [new Agent/TCPSink]
$ns attach-agent $n(1) $tcp
$ns attach-agent $n(3) $sink
$ns connect $tcp $sink
set ftp [new Application/FTP]
$ftp attach-agent $tcp
$ns at 10.0 “$ftp start”

# Set a TCP connection between n(2) and n(4)
set tcp [new Agent/TCP/Newreno]
$tcp set class_ 2
set sink [new Agent/TCPSink]
$ns attach-agent $n(2) $tcp
$ns attach-agent $n(4) $sink
$ns connect $tcp $sink

#defining heads
$ns at 0.0 “$n(0) label CH”
$ns at 0.0 “$n(1) label Source”
#$ns at 0.0 “$n(2) label N2″

$ns at 10.0 “$n(2) setdest 785.0 228.0 5.0″
$ns at 13.0 “$n(4) setdest 700.0 20.0 5.0″
$ns at 15.0 “$n(3) setdest 115.0 85.0 5.0″

#Color change while moving from one group to another
$ns at 73.0 “$n(2) delete-mark N2″
$ns at 73.0 “$n(2) add-mark N2 pink circle”
$ns at 124.0 “$n(1) delete-mark N11″
$ns at 124.0 “$n(1) add-mark N11 purple circle”
$ns at 103.0 “$n(5) delete-mark N5″
$ns at 103.0 “$n(5) add-mark N5 white circle”
$ns at 87.0 “$n(3) delete-mark N26″
$ns at 87.0 “$n(3) add-mark N26 yellow circle”
$ns at 92.0 “$n(0) delete-mark N14″
$ns at 92.0 “$n(0) add-mark N14 green circle”

# Define node initial position in nam
for {set i 0} {$i < $val(nn)} { incr i } {
# 20 defines the node size for nam
$ns initial_node_pos $n($i) 20
}

# Telling nodes when the simulation ends
for {set i 0} {$i < $val(nn) } { incr i } {
$ns at $val(stop) “$n($i) reset”;
}

# ending nam and the simulation
$ns at $val(stop) “$ns nam-end-wireless $val(stop)”
$ns at $val(stop) “stop”
$ns at 150.01 “puts \”end simulation\” ; $ns halt”
proc stop {} {
global ns tracefd namtrace
$ns flush-trace
close $tracefd
close $namtrace
exec nam simwrls.nam &
}

$ns run

Save and close it.

Now open terminal and type ns exproto.tcl.It shall run perfectly and nam should open.

The trace file should look as follows.

s 0.007102330 _0_ RTR  --- 0 PROTONAME 27 [0 0 0 0] ------- [0:255 -1:255 32 0] [PROTONAME 0 0 7]
r 0.008123076 _1_ RTR  --- 0 PROTONAME 27 [0 ffffffff 0 800] ------- [0:255 -1:255 32 0] [PROTONAME 0 0 7]
s 0.044061336 _1_ RTR  --- 1 PROTONAME 27 [0 0 0 0] ------- [1:255 -1:255 32 0] [PROTONAME 1 0 7]
r 0.045102081 _0_ RTR  --- 1 PROTONAME 27 [0 ffffffff 1 800] ------- [1:255 -1:255 32 0] [PROTONAME 1 0 7]
r 0.045102081 _3_ RTR  --- 1 PROTONAME 27 [0 ffffffff 1 800] ------- [1:255 -1:255 32 0] [PROTONAME 1 0 7]
...........
...........

now u have successfully implemented the unicast routing protocol for MANETs. U should not face any problems if you follow the above steps.


For more....click here

Comments

Popular posts from this blog

Link State Routing Protocol

Link state routing is a method in which each router shares its neighborhood’s knowledge with every other router on the internetwork. In this algorithm, each router in the network understands the network topology and then makes a routing table depending on this topology. Each router will share data about its connection to its neighbor, who will, consecutively, reproduce the data to its neighbors, etc. This appears just before all routers have constructed a topology of the network. In LSP, each node transmits its IP address and the MAC to its neighbor with its signature. Neighbors determine the signature and maintain a record of the combining IP address and the MAC. The Neighbor Lookup Protocol (NLP) of LSP derives and maintains the MAC and IP address of every network frame accepted by a node. The extracted data can support the mapping of MACs and IP addresses. The link-state flooding algorithm prevents the general issues of broadcast in the existence of loops by having every node mainta...

Matter: A next generation home standard

The smart home is evolving. To date, if you've wanted to get into developing a smart home, you've had to deal with the multitude of smart home ecosystems, and making sure that each device you buy is compatible. That, however, may soon change — thanks to new smart home standard called Matter. Matter isn't available just yet, but when it is finally released, it could completely change how you buy smart home products, for the better. All of the best smart home devices could soon support the standard, helping them all work together nicely, and ensuring that no matter what products you buy, you'll be able to use them. Matter is basically the name of a new smart home connectivity standard . But this standard is a little unlike others. That's because of the fact that it's being developed by the Connectivity Standards Alliance, which counts hundreds of companies as members. That includes the likes of Google, Alexa, and Apple. So, whether you prefer to use Google Assista...

New interactive stickers for Stories

Instagram has introduced several new features to Stories, offering interactive ways to share music, photos, and videos. One of the most interesting additions is a feature called Reveal , which blurs the content of a story post and requires viewers to DM the person who shared it in order to see it. Instagram's head, Adam Mosseri, has emphasized the importance of direct messages on the platform, with stories and DMs driving most of Instagram's growth. Requiring a DM to view content represents the next step in boosting engagement, and creators are likely to use it as a tactic to increase their stories' engagement. Another new feature, Frames, adds a Polaroid overlay to images that initially appear gray. Users can shake their phone to reveal the photo, resembling the process many people associate with Polaroid pictures, despite the fact that shaking Polaroids is not recommended by the company during development. Instagram has also introduced a music-based template feature calle...