Skip to main content

DIFFERENT TRANSMISSION RANGE FOR NODES IN ONE SIMULATION

 Most of my online friends asked me that "is any way to increase transmission range of nodes in one simulation??".Here, we are showing a simple scenario and test sample script for this.


Scenario:
Two wireless nodes n0 and n1 are placed into a flat area and have distance of 200m. Both nodes send packets with the same transmission power, but have different receiving range. I set n0's receiving range to 250m, and its carrier sensing range to 550m. n1's receiving range is 160m, and its carrier sensing range is 400m.



EXPLANATION OF RESULT:

Both nodes try to send exactly one packet to the other using DSR. Because there is no bi-directional connection exist, the actual data connection could not be be established (DSR needs a bi-directional connection for route discovery). However, we can verify the difference of two transmission ranges by observing the reachability of DSR RREQ packets broadcast by each node.


The first connection starts at the 1st second, from n0 to n1. The second connection starts at the 5th second, from n1 to n0. By analyzing the trace file, I found that the all RREQ packets from n0 were not heard by n1. But all RREQ packets sent by n1 were successfully received by n0. This makes sense because n1's receiving ranges (160m) is samller than its distance to n0 (200m), thus it cannot heard any packet from n0. However, because n0's receiving range (250m) is bigger than the distance, it can hear RREQ from n1. n0 also sent out replies to n1, but n1 could not heard it.

For sample TCL Script, Click here

Comments

Popular posts from this blog

Link State Routing Protocol

Link state routing is a method in which each router shares its neighborhood’s knowledge with every other router on the internetwork. In this algorithm, each router in the network understands the network topology and then makes a routing table depending on this topology. Each router will share data about its connection to its neighbor, who will, consecutively, reproduce the data to its neighbors, etc. This appears just before all routers have constructed a topology of the network. In LSP, each node transmits its IP address and the MAC to its neighbor with its signature. Neighbors determine the signature and maintain a record of the combining IP address and the MAC. The Neighbor Lookup Protocol (NLP) of LSP derives and maintains the MAC and IP address of every network frame accepted by a node. The extracted data can support the mapping of MACs and IP addresses. The link-state flooding algorithm prevents the general issues of broadcast in the existence of loops by having every node mainta...

Matter: A next generation home standard

The smart home is evolving. To date, if you've wanted to get into developing a smart home, you've had to deal with the multitude of smart home ecosystems, and making sure that each device you buy is compatible. That, however, may soon change — thanks to new smart home standard called Matter. Matter isn't available just yet, but when it is finally released, it could completely change how you buy smart home products, for the better. All of the best smart home devices could soon support the standard, helping them all work together nicely, and ensuring that no matter what products you buy, you'll be able to use them. Matter is basically the name of a new smart home connectivity standard . But this standard is a little unlike others. That's because of the fact that it's being developed by the Connectivity Standards Alliance, which counts hundreds of companies as members. That includes the likes of Google, Alexa, and Apple. So, whether you prefer to use Google Assista...

HP NETWORK SIMULATOR: A COMWARE OS LEARNING TOOL

  Comware v7 is a network operating system that runs on HP high-end network devices. The HP Network Simulator is an ideal Comware v7 learning tool, which allows users to create, configure, and connect simulated networks. Benefits Beginners  – The HP Network Simulator tool is helpful for users who are new to networking and want to learn how to configure network devices (switches, routers), various topologies, or different routing and switching protocols and features. Experienced users  – The HP Network Simulator learning tool is helpful for users who have experience with non-HP networking devices and want to learn the Comware CLI and features. Extra devices  – Users can create devices using the HP Network Simulator and use them with their physical devices to configure and test topologies that aren’t configurable with just the physical devices they have. For example – A user wants to configure OSPF using 3 or more devices but has only 1 physical router. User can create...