Skip to main content

DRIVER LESS CARS...........TESTING STARTED......!!!!

 Imagine a town with crosswalks but no pedestrians, cars and trucks but no drivers. Welcome to Mcity, a fake "town" built by researchers who are testing out the driverless cars of the future.

The controlled test environment, which opened today (July 20) at the University of Michigan (U-M) in Ann Arbor, covers 32 acres (the size of about 24 football fields) and contains all the trappings of a real suburb or small city. There is an entire network of roads lined with sidewalks, streetlights, stop signs and traffic signals. There's even a "downtown" area complete with fake building facades and outdoor dining areas.The idea behind Mcity is simple: test out new driverless car innovations in a human-free environment before these technologies are unleashed in the real world."Mcity is a safe, controlled, and realistic environment where we are going to figure out how the incredible potential of connected and automated vehicles can be realized quickly, efficiently and safely," Peter Sweatman, director of the Mobility Transformation Center (MTC) at U-M, said in a statement.
The roads of Mcity are built to stand up to "rigorous, repeatable" testing, according to MTC officials. While Mcity drivers don't have to contend with real pedestrians, there will be one mechanical foot-traveler (a robotlike machine named Sebastian) that steps out into traffic to see whether the automated cars can hit the brakes in time. The simulated city also features a traffic circle, a bridge, a tunnel, some unpaved roads, and even a four-lane highway with entrance and exit ramps, according to a report by Bloomberg Business.
In addition to evaluating fully automated, or driverless, cars, the researchers also hope to test out so-called connected vehicles within Mcity's limits. Connected cars can either communicate with one another (vehicle-to-vehicle control, or V2V) or with pieces of equipment, such as traffic lights, that are located near roadways (vehicle-to-infrastructure control, or V2I).
Even the smallest details of Mcity have been planned out in advance to replicate conditions that connected and automated vehicles could face in the real world. For example, there are street signs covered up with graffiti, and faded yellow and white lane markings line the streets.
Mcity is just one part of a much larger project that MTC and its partner organizations are establishing in an effort to get a whole fleet of connected and driverless cars on the road in Ann Arbor by 2021. In addition to the fake city, MTC is also continuing to launch connected and semi-autonomous cars on real roadways. Eventually, the University of Michigan and the Michigan Department of Transportation said they hope to put 20,000 connected cars on the roads of southern Michigan.

Courtesy: livescience

Comments

Popular posts from this blog

Link State Routing Protocol

Link state routing is a method in which each router shares its neighborhood’s knowledge with every other router on the internetwork. In this algorithm, each router in the network understands the network topology and then makes a routing table depending on this topology. Each router will share data about its connection to its neighbor, who will, consecutively, reproduce the data to its neighbors, etc. This appears just before all routers have constructed a topology of the network. In LSP, each node transmits its IP address and the MAC to its neighbor with its signature. Neighbors determine the signature and maintain a record of the combining IP address and the MAC. The Neighbor Lookup Protocol (NLP) of LSP derives and maintains the MAC and IP address of every network frame accepted by a node. The extracted data can support the mapping of MACs and IP addresses. The link-state flooding algorithm prevents the general issues of broadcast in the existence of loops by having every node mainta

Windows 11

Windows has always existed to be a stage for the world’s innovation. It’s been the backbone of global businesses and where scrappy startups became household names. The web was born and grew up on Windows. It’s the place where many of us wrote our first email, played our first PC game and wrote our first line of code. Windows is the place people go to create, to connect, to learn and to achieve – a platform over a billion people today rely on. The responsibility of designing for that many people is one we don’t take lightly. The past 18 months brought an incredible shift in how we used our PCs; we went from fitting the PC into our lives to trying to fit our whole lives into the PC. Our devices weren’t just where we went for meetings, classes and to get things done, but where we came to play games with friends, binge watch our favorite shows and, perhaps most meaningfully, connect with one another. In the process we found ourselves recreating the office banter, the hallway chatter, worko

Matter: A next generation home standard

The smart home is evolving. To date, if you've wanted to get into developing a smart home, you've had to deal with the multitude of smart home ecosystems, and making sure that each device you buy is compatible. That, however, may soon change — thanks to new smart home standard called Matter. Matter isn't available just yet, but when it is finally released, it could completely change how you buy smart home products, for the better. All of the best smart home devices could soon support the standard, helping them all work together nicely, and ensuring that no matter what products you buy, you'll be able to use them. Matter is basically the name of a new smart home connectivity standard . But this standard is a little unlike others. That's because of the fact that it's being developed by the Connectivity Standards Alliance, which counts hundreds of companies as members. That includes the likes of Google, Alexa, and Apple. So, whether you prefer to use Google Assista